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Abstract. An ability to accurately detect convective regions is essential for initializing models for short term precipitation 

forecasts. Radar data are commonly used to detect convection, but radars that provide high temporal resolution data are 

mostly available over land and the quality of the data tends to degrade over mountainous regions. On the other hand, 10 

geostationary satellite data are available nearly anywhere and in near-real time. Current operational geostationary satellites, 

the Geostationary Operational Environmental Satellite-16 (GOES-16) and -17 provide high spatial and temporal resolution 

data, but only of cloud top properties. One-minute data, however, allow us to observe convection from visible and infrared 

data even without vertical information of the convective system. Existing detection algorithms using visible and infrared data 

look for static features of convective clouds such as overshooting top or lumpy cloud top surface, or cloud growth that 15 

occurs over periods of 30 minutes to an hour. This study represents a proof-of-concept that Artificial Intelligence (AI) is 

able, when given high spatial and temporal resolution data from GOES-16, to learn physical properties of convective clouds 

and automate the detection process. 

A neural network model with convolutional layers is proposed to identify convection from the high-temporal resolution 

GOES-16 data. The model takes five temporal images from channel 2 (0.65m) and 14 (11.2m) as inputs and produces a 20 

map of convective regions. In order to provide products comparable to the radar products, it is trained against Multi-Radar 

Multi-Sensor (MRMS), which is a radar-based product that uses rather sophisticated method to classify precipitation types. 

Two channels from GOES-16, each related to cloud optical depth (channel 2) and cloud top height (channel 14), are 

expected to best represent features of convective clouds: high reflectance, lumpy cloud top surface, and low cloud top 

temperature. The model has correctly learned those features of convective clouds, and resulted reasonably low false alarm 25 

ratio (FAR) and high probability of detection (POD). However, FAR and POD can vary depending on the threshold, and a 

proper threshold needs to be chosen based on the purpose. 
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1 Introduction 

Artificial intelligence (AI) is flourishing more than ever as we live in the era of big data and increased processing 30 

power. Atmospheric science, with vast amounts of satellite and model data, is not an exception. In fact, numerical weather 

prediction and remote sensing are ideally suited to machine learning as weather forecasts can be generated on demand, and 

satellite data are available around the globe (Boukabara et al., 2019). Applying machine learning to forecast models can be 

beneficial in many ways. It can improve computational efficiency of model physics parameterizations (Krasnopolsky et al., 

2005) as well as developing new parameterizations (O’Gorman et al., 2018; Brenowitz and Bretherton, 2018; Beucler et al., 35 

2019; Gentine et al., 2018; Rasp et al., 2018; Krasnopolsky et al., 2013). On the other hand, applying machine learning 

techniques to satellite data can help overcome limitations with both pattern recognition as well as multi-channel information 

extraction.  

 

Detecting convective regions from satellite data is of great interest as convection resolving models begin to be 40 

applied on global scales. Historically, these models were only regional, and surface radars within dense radar networks were 

used. Radars are useful because of the direct relationship between radar reflectivity and precipitation rates and their ability to 

provide vertical information about convective systems. However, ground-based radars are not available over oceanic or 

mountainous regions, and radars on polar-orbiting satellites have been limited to very narrow swaths. Therefore, many 

studies have suggested methods for using geostationary visible and infrared imagery that has good temporal and spatial 45 

coverage.  

 

Visible and infrared data from geostationary satellites are available nearly anywhere and in near-real time. They 

have provided an enormous amount of weather data, but due to the lack of vertical information, their use in forecasting has 

been limited largely to providing cloud top temperature or atmospheric motion vectors in regions without convection 50 

(Benjamin et al., 2016). Some studies have tried to identify convective regions using these sensors by finding overshooting 

tops (Bedka et al., 2010; Bedka et al., 2012; Bedka and Khlopenkov, 2016) or enhanced-V features (Brunner et al., 2007). 

However, since not all the convective clouds have such features, and never until they reach a very mature stage, some studies 

have tried to detect broader convective regions by using lumpy cloud top surfaces (Bedka and Khlopenkov, 2016). Studies 

have also looked at convective initiation by observing rapidly decreasing cloud top heights (Mecikalski et al., 2010; Sieglaff 55 

et al., 2011) but were limited by tracking problems when only 15-, 30-, or even just 60-minute data were available.  

 

Current operational geostationary satellites, the Geostationary Operational Environmental Satellite-R (GOES-R) 

series, foster the use of visible and infrared sensors in detecting convection as their spatial and temporal resolutions are much 

improved from their predecessors. Currently operational GOES-16 and GOES-17 carry the advanced baseline imager (ABI), 60 

whose 16 channels comprise wavelengths from visible to infrared. Data is collected every 10 minutes over the full disk area, 
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5 minutes over Contiguous United States (CONUS), and every minute in mesoscale sectors defined by the National Weather 

Service as containing significant weather events. When humans look at image loops of reflectance data with such high 

temporal resolution, most can point at convective regions because they know from past experiences that bubbling clouds 

resemble bubbling pots of water that imply convective heating. A recent study by Lee et al. 2020 uses several features of 65 

convective clouds such as high reflectance, low brightness temperature, and lumpy cloud top surface to detect convection 

from GOES-16 data in mesoscale sector. In their method, respective thresholds for reflectance, brightness temperature, and 

lumpiness are determined empirically. Here we seek to automate the process of detecting convection using AI, which, 

provided with the same type of information that humans use in this decision process, might be able to learn similar strategies 

as humans. Thus this study applies machine learning techniques to detect convection using high temporal resolution visible 70 

and infrared data in ABI.  

 

Machine learning, and in particular neural networks, are emerging in many remote sensing applications for clouds 

(Mahajan and Fataniya, 2020). Application of neural networks has led to more use of geostationary satellite data in cloud-

related products such as cloud type classification or rainfall rate estimation which has been challenging in the past (Bankert 75 

et al., 2009; Gorooh et al., 2020; Hayatbini et al., 2019; Hirose et al., 2019). Especially using GOES-16, raining cloud is 

detected by Liu et al. 2019 with a deep neural network model, and radar reflectivity is estimated by Hilburn et al. 2020 using 

a model with convolutional layers. Spectral information from several channels in geostationary satellites has been useful to 

deduce cloud physics along with the spatial context that can be extracted using convolutional layers.  

 80 

Machine learning techniques have recently been viewed as solving every existing problem without the need for 

physical insight, but in practice, physical knowledge of the system is usually essential to solve problems effectively. These 

properties that are associated with mature convection have temporal aspects; continuously high reflectance, high or growing 

cloud top height and bubbling cloud top surface over time. Therefore, these time-evolving properties are considered when 

selecting and processing the input and output dataset as well as in constructing the model setup.  85 

 

This study explores a machine learning model with a convolutional neural network (CNN) architecture to detect 

convection from GOES-16 ABI data. The model is trained using Multi-Radar Multi-Sensor (MRMS), one of the radar-based 

products, as outputs. After training, the model results on validation and testing dataset are compared to examine its detection 

skill, and two scenes from the testing data are presented to further explore which feature of convection the model uses to 90 

detect convective regions.  

 

Features that distinguish this work from existing work are: (1) Studies using machine learning with geostationary 

satellite data are typically designed for the goal of rainfall rate estimations or classification of various cloud types, while our 

goal is detecting convection so that appropriate heating can be added to initiate convection in the forecast model; (2) We 95 
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feed temporal sequences of GOES-16 imagery into the neural network model to provide the algorithm with the same 

information a human would find useful to detect the bubbling texture in GOES-16 imagery indicative of convection; (3) We 

use a two-step loss function approach which makes the model’s performance less sensitive to threshold choice. 

2 Data 

GOES-16 ABI data are used as inputs to the CNN model, while the outputs are obtained from the Multi-Radar 100 

Multi-Sensor (MRMS) dataset. Three independent datasets are prepared for training, validation, and testing. Data are 

collected over the central and eastern part of CONUS where GOES-16 focuses on. Table 1 and 2 lists time and location of 20 

significant weather events to span a broad set of deep convective storms that are used to create the dataset. Input data are 

obtained every 20 minutes so that the dataset contains overall evolution of convection from convective initiation to mature 

stage of convection. As shown in the table, training data are selected mostly over the southern and eastern part of CONUS to 105 

effectively train the model with higher quality of radar data over those regions. A total of 19,987 training data are collected 

from 10 convective cases in Table 1, but only 10,019 images that contain raining scenes are used during the training, and the 

remaining scenes are discarded. This is done to force the model to focus more on distinguishing between convective core and 

surrounding stratiform clouds, rather than training with redundant non-precipitation scenes. For validation and testing, a total 

of 9,192 and 7,914 data samples are collected, respectively, each from five convective cases in Table 2. Similarly to training 110 

data, around half of both validation and testing dataset are clear regions, but no scenes are discarded in that case, whether 

they contain rain or not. 

 

Table 1. A description of ten convective cases used for training data. 

Date Time Mainly affected area 

2019-05-28 2000 ~ 2350UTC OK, KS, IA 

2019-07-05 2000 ~ 2350UTC CO, WY, NM, KS 

2019-07-10 1600 ~ 2350UTC OK, AR, MO, TX 

2020-05-12 1600 ~ 2350UTC TX 

2020-05-15 1400 ~ 2350UTC OK, TX 

2020-05-24 1900 ~ 2350UTC TX 

2020-06-19 (M1) 1900 ~ 2350UTC PA, MD, VA, NC 

2020-06-19 (M2) 1900 ~ 2350UTC TX, OK, CO 

2020-06-21 1900 ~ 2350UTC KS 

2020-07-12 1900 ~ 2050UTC AL, MS 

 115 
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Table 2. A description of ten convective cases used for validation (upper five) and testing (lower five) data. 

Date Time Mainly affected area 

2019-05-23 2100 ~ 2350UTC TX, OK, KS 

2019-05-24 1900 ~ 2350UTC TX, OK, KS 

2019-08-20 1800 ~ 2150UTC MO, IL, IN 

2020-07-22 1800 ~ 2350UTC VA, MD, PA, DE, JN 

2020-07-31 1800 ~ 2350UTC TX, LA, MS, AL 

2019-06-22 1900 ~ 2350UTC MS, AL, GA 

2019-06-23 2000 ~ 2350UTC TX, OK, AR, LA 

2019-08-13 1900 ~ 2150UTC TN, NC, SC, VA 

2020-07-02 2000 ~ 2350UTC CO, KS, NE, SD 

2020-08-06 1900 ~ 2350UTC NC, VA, DE 

 120 

2.1 The Geostationary Operational Environmental Satellite R series (GOES-R) 

GOES-R series, consisting of GOES-16 and GOES-17, carry the ABI with 16 channels. Channel 2 is referred to as 

the “red” band, and its central wavelength is at 0.65m. It has the finest spatial resolution of 0.5km, and therefore provides 

the most detailed image for a scene. Any data with sun zenith angle higher than 65 is removed, and reflectance data at this 

channel are divided by the cosine of the sun zenith angle to normalize the reflectance data. Since normalized reflectance 125 

values rarely exceed 2, any data with a reflectance value greater than 2 is truncated at 2. All data is subsequently scaled to a 

range from 0 to 1. Although we can observe bubbling from reflectance images at channel 2 (0.65m), additional brightness 

temperature data can effectively remove some low cumulus clouds that appear bright. These clouds are not distinguishable 

from high clouds in the visible image, but they appear distinct in an infrared Tb map. Therefore, brightness temperature data 

at channel 14 are also inserted as input for the AI model. Note that the spatial resolution of channel 14 is 2km, i.e. four times 130 

coarser than that of channel 2. Channel 14 is a “longwave window” band, and its central wavelength is located at 11.2m. 

This channel is usually used to retrieve cloud top temperature, and therefore is used to eliminate low cumulus clouds. 

Channel 14 data are also scaled linearly from 0 to 1, corresponding to a minimum value of 180K and a maximum value of 

320K.  

 135 

Input data of channels 2 and 14 are created by separating the whole image into multiple 64km64km images 

corresponding to 128128 and 3232 pixels at channels 2 and 14, respectively. We will refer to these small images as tiles. 

Each input sample then consists of five consecutive tiles at channel 2, at two-minute interval, and five consecutive tiles at 

channel 14, also at two-minute interval, but lower resolution.  

2.2 Multi-Radar/Multi-Sensor (MRMS) 140 

MRMS data, developed at NOAA’s National Severe Storms Laboratory, are produced combining radar data with 

atmospheric environmental data, satellite, lightning, and rain gauge data (Zhang et al., 2016). “PrecipFlag”, one of the 

https://doi.org/10.5194/amt-2020-420
Preprint. Discussion started: 14 November 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

available variables in MRMS, classifies surface precipitation into seven categories; 1) warm stratiform rain, 2) cool 

stratiform rain, 3) convective rain, 4) tropical-stratiform rain mix, 5) tropical-convective rain mix, 6) hail, and 7) snow. A 

detailed description of the classification can be found in Zhang et al. (2016). The classification goes beyond using a simple 145 

reflectivity threshold as it considers vertically integrated liquid, composite reflectivity, and reflectivity at 0C or -10C 

according to radar’s horizontal range. In addition, the quality of the product is further improved by effectively removing 

trailing straitiform regions with high reflectivity or regions with bright band or melting graupel (Qi et al., 2013). 

 

This radar-based product is used as output or truth with slight modifications. Since our model is set up to produce a 150 

binary classification of either convection or non-convection, the seven MRMS categories are reconstructed into two classes. 

Precipitation types of convective rain, tropical-convective rain mix, and hail are assigned as convection, and everything else 

are assigned as non-convection excluding grid points with snow class. A value of either 0 (non-convective) or 1 (convective) 

is assigned to each grid point of the 128x128 tile (6464km), after applying a parallax correction with an assumed constant 

cloud top height of 10km. Grid points are assigned to 1 if the grid point is assigned as convective at least once during the 155 

five time steps. In order to remove low quality data, only the data with “Radar quality index (RQI)” greater than 0.5 are used 

in the study.  

 

As mentioned in the beginning of this section, non-precipitating scenes that are not classified to any of the 

precipitation type are removed during training. Otherwise, the number of non-convective scenes greatly exceeds the number 160 

of convective scenes, and misclassification penalties calculated from misclassified convective cases have less impact in 

updating the model. 

 

 

3 Machine learning model 165 

The problem we are trying to solve can be interpreted as an image-to-image translation problem, namely converting 

the GOES-R images to a map indicating convective regions. Neural networks have been shown to be a powerful tool for this 

type of task. A neural network can be thought of as a function approximator, that learns, from a large number of input-output 

data pairs, to emulate the mapping from input to output. Just like a linear regression model seeks to learn a linear 

approximation from input to output variables, neural networks seek to achieve approximations that are non-linear and might 170 

capture highly complex input-output relationships. 

 

Convolutional neural networks (CNNs) are a special type of neural network developed for working with images, 

designed to extract and utilize spatial patterns in images. CNNs have different layer types that implement different types of 

image operations, four of which are used here, namely convolution (C), pooling (P), upsampling (U), and batch 175 

normalization (BN) layers. Convolution layers implement the type of mask and convolution operation as used in classic 
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image processing. However, in classic image processing the masks are predefined to achieve a specific purpose, such as 

smoothing or edge detection, while the masks in convolutional layers have adjustable mask values that are trained to match 

whatever functionality is needed. Pooling layers are used to reduce the resolution of an image. For example, a so-called 

“maxpooling” layer of size 22 takes non-overlapping 22 patches of an image and maps each to a single pixel containing 180 

the maximum value of the 22 patch. Upsampling layers seek to invert pooling operations. For example, an upsampling 

layer of size 22 expands the resolution of an image by replacing each original pixel by a 22 patch through interpolation. 

Obviously, as information is lost in the pooling operation, an upsampling layer alone cannot invert a pooling layer, it just 

restores the image dimension, but additional convolution layers are needed to help fill in the remaining information. Batch 

normalization layers apply simple transformations to intermediate results in the CNN to avoid extremely large or small 185 

values, which tend to speed up neural network training. 

 

The type of CNN used here is an encoder-decoder model. Encoder-decoder models take as input one or more 

images, feed them through sequential layers (C,P and U) that transform the image into a series of intermediate images, that 

finally lead to one or more images at the output. Encoder-decoder models use an encoder section with several convolution 190 

and pooling layers that reduces image dimension in order to extract spatial patterns of increasing size from the input images. 

The encoder is followed by a decoder section with several convolution and upsampling layers that expands the low 

resolution intermediate images back into the original input image size, while also expanding it in a different representation, 

such as converting the GOES-16 images to a map indicating convective regions. 

 195 

Here an encoder-decoder model is built to produce a map of convective regions from two sets of five consecutive 

GOES-R images with two-minute interval: one set from channel 2 (0.65m) and the other from channel 14 (11.2m). The 

encoder-decoder model is implemented using the framework of Tensorflow and Keras. Figure 1 shows the architecture of the 

encoder-decoder model, and a model summary is shown in Table A1. Note that each convolution layer in Fig. 1 is followed 

by a batch normalization layer. Those batch normalization layers are not shown in Fig. 1 to keep the schematic simple, but 200 

are listed in Table A1. In the input layer, only the reflectance data are read in. After two sets of two convolution layers (the 

first set with 16 filters and the second set with 32 filters), each set followed by a maxpooling layer, the spatial resolution of 

the feature maps is reduced to the same resolution as the Tb data. The Tb data are added at that point to the 32 feature maps 

from the previous layer, producing 37 feature maps. After another two sets of two convolution layers (each set respectively 

with 64 and 128 filters), each set followed again by one maxpooling layer, we reach the bottleneck layer of the model, i.e. 205 

the layer with the most compressed representation of the input. The bottleneck layer is the end of the encoder section of the 

model, and the beginning of the decoder section. The decoder section consists of four sets of two convolution layer (with a 

decreasing number of 128, 64, 32, and 16 filters). The first three sets of convolution layers are each followed by an 

upsampling layer, but the last set is followed by a transposed convolution layer with one filter to match with the 2D output. 
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The single transposed convolution layer used here contains both upsampling and a convolution layer. Every layer uses the 210 

Rectified Linear Unit (ReLu) activation function except for the last transposed convolution layer, which uses a sigmoid 

function instead. A sigmoid function is chosen for the last layer so that the model produces a 128128 map with continuous 

values between 0 and 1. These continuous values imply how close each pixel is to being non-convective (0) or convective 

(1). The values rarely reach 1, and therefore, a threshold has to be set to determine whether a grid point is convective or not. 

Higher threshold can increase the accuracy of the model, but more convective regions can be missed. Using different 215 

thresholds will be discussed in the next section.  

 

A neural network is trained, i.e. its parameters are optimized, such that it minimizes a cost function that measures 

how well the model fits the data. It is very important to choose this cost function, generally called loss function for neural 

networks, to accurately represent the performance we want to achieve. We investigate using a standard or two-step training 220 

approach, as described below. The standard approach minimizes a single loss function throughout the entire training. In this 

case, we use the mean squared error (MSE) as the loss function which penalizes misses and false alarms equally:  

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 = ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2                    (1) 

where 𝑦𝑡𝑟𝑢𝑒 is true output image and 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is the predicted output image, and the sum extends over all pixels of the 

true/predicted image. 225 

 

 The two-step training approach also starts out using the MSE as loss function (equation (1)). However, once the 

MSE on the validation data converges to a low steady value, the neural network training continues with the loss function in 

equation (2) which adds an extra penalty when the model misses convective regions (but not when it overestimates), in an 

effort to reduce missed regions: 230 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 + ∑ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 ((𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑), 0)                   (2) 

 

where the sum again extends over all pixels of the true/predicted image. The additional term in equation (2) is a positive for 

all pixels where the prediction is too small and 0 otherwise, thus it is expected to guide the model to detect more convective 

regions. The idea of using two different loss functions for coarse training and subsequent finetuning, or, more generally, to 235 

adjust loss functions throughout different stages of training, is discussed in more detail for example by Bu et al. 2020.  

 

 Results using one model trained with the standard approach and one trained with the two-step approach are 

compared in the next section. Detailed evaluation of the results is only presented for the two-step approach, as that represents 

our preferred model. 240 
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Figure 1 Description of the encoder-decoder model. (33) represents the dimension of a filter used in convolutional layers. MP 

refers to the maxpooling layer and UP refers to the upsampling layer, both with a window size of (22). Starting from five channel 

2 images (upper left), the encoder section is presented in the upper row with the additional five channel 14 images entering after 

the second maxpooling layer. The decoder section is shown in the lower row from right to left with the output layer at the end 

(lower left). 
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4 Results 

4.1 Overall performance using standard approach and two-step approach 245 

In order to evaluate detection skill of the model, false alarm ratio (FAR), probability of detection (POD), success 

ratio (SR), and critical success index (CSI) are calculated for the training, validation, and testing dataset. FAR, POD, SR, and 

CSI can be calculated from the equations below. 

𝐹𝐴𝑅 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
      (3)   

𝑃𝑂𝐷 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
                (4) 250 

𝑆𝑅 = 1 − 𝐹𝐴𝑅 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
     (5) 

𝐶𝑆𝐼 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
      (6) 

“Hits” are grid points that are classified as convective both by the model and MRMS. Considering slight mismatch due to 

different views by GOES and MRMS, hits are defined for a grid point deemed convective by the CNN model if MRMS 

assigns convective within 2.5km (5 grid points apart) even if MRMS classifies as non-convective at the actual grid point. 255 

“Misses” are grid points that are assigned as convective by MRMS but not by the model within 2.5km. “False alarms” are 

grid points that are predicted as convective by the model but not by MRMS within 2.5km. Figure 2 shows a performance 

diagram (Roebber, 2009) for a model using the two-step training approach demonstrating the effect of different thresholds 

for the training and validation dataset. As shown in the figure, there is a trade-off between fewer false alarms and more 

correctly detected regions. A higher threshold prevents the model from resulting in high FAR, but at the same time, POD 260 

becomes lower, and vice versa. Compared to SR and POD of 0.86 and 0.45 from Lee et al. 2020 that uses GOES-16 data as 

well, POD is much improved.  

https://doi.org/10.5194/amt-2020-420
Preprint. Discussion started: 14 November 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

To compare results using the additional term in the loss function, a performance diagram for the testing dataset is 

shown in Fig. 3a for the same two-step model as in Fig. 2, together with a performance diagram using a model trained using 

the standard approach (only using MSE) in Fig. 3b. Figure 3a and 3b show similar curves and thus similar detection skills, 265 

but the model trained with the standard approach needs a lower threshold to achieve similar detection skill. In Fig. 3b, SR 

starts to degrade as the threshold becomes higher than 0.75, indicating that grid points with higher values, which are 

supposed to have the highest possibility to be convective, might be falsely detected ones in the model. This effect is also 

observed in the two-step model for extremely large thresholds (higher than 0.95), but those are not shown in Fig. 3a. The 

two-step model has slightly higher maximal CSI value of 0.62 than the model trained with standard approach which has CSI 270 

of 0.61. Even though adding the second term in equation (2) does not seem to improve overall detection skill significantly, 

the resulting two-step model has less variation in FAR and POD between the thresholds, and more thresholds in the two-step 

model show CSI exceeding 0.6. We thus prefer the two-step model, as it delivers good performance without being overly 

sensitive to the specific threshold choice, so likely to perform more robustly across different data sets. Only results using the 

two-step model are further discussed.  275 

The overall FAR and POD using the two-step approach are similar for the validation (Fig. 2b) and testing dataset 

(Fig. 3a), which implies the model is consistent, but they tend to fluctuate between different convective cases. Further 

examination on what the model has learned to identify convection is conducted by taking a closer look at two different 

scenes from the testing dataset in the following subsection. For each scene, results using different thresholds are presented, 

and several tiles in the scene are shown for discussion. 280 
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Figure 2 Performance diagrams using the two-step training approach for (a) training and (b) testing dataset. Numbers next to the 

symbol are thresholds used to get corresponding SR and POD. Dashed lines represent CSI contours with labels at the top. 

Figure 3 Performance diagrams using a model trained with (a) two-step training approach and (b) standard approach for testing 

dataset. Numbers next to the symbol are thresholds used to get corresponding SR and POD. Dashed lines represent CSI contours 

with labels at the top. The maximum CSI value is (a) 0.62 and (b) 0.61. CSI above 0.6 is achieved in (a) for thresholds from 0.25 to 

0.45 and in (b) only for thresholds from 0.2 to 0.25. POD, FAR, SR, and CSI for all thresholds shown here are provided in Tables 

A2 and A3. 

(a) (b)

(a) (b)
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4.2 Exploring results for different scenes 295 

Figure 4a shows GOES-16 visible imagery at channel 2 on 20th August, 2019 when a eastward moving low pressure 

system produced torrential rain. Some regions look discontinuous in the figure as 128128 tiles with lower radar quality 

were eliminated from the dataset. Comparing with convective regions (pink) assigned by MRMS PrecipFlag in Fig. 4b, 

convective clouds in the south of Missouri and Illinois or over Indiana show clear bubbling features while some over the 

Great Lakes do not. This is reflected in the results using different thresholds as the lower threshold tends to allow less 300 

bubbling regions to be convective. FAR and POD when using 0.5 are 11.0% and 51.4%, while they are 15.0% and 67.7% 

with 0.3. Additional detection made by 0.3 that contributed to increase in POD mostly occurred in less bubbling regions. 

Convective regions predicted by the model using two different thresholds of 0.5 and 0.3 are shown in Fig. 5a and 5b, 

respectively. Colored regions in Fig. 5 are convective regions predicted by the model, and the colors represent a scale of how 

much it is close to being convective (values close to 1 are more convective and values close to 0 are more stratiform). It is 305 

evident from the figures that using 0.3 as the threshold detects more convective regions than using 0.5. The colored boxes in 

Fig. 5b indicate six scenes selected for further study, namely two scenes that are correctly identified as convection (green 

boxes), two scenes detected using the threshold of 0.3, but not of 0.5 (yellow boxes), and two scenes missed at both 

thresholds (red boxes). 

Figure 4 A scene at 19:00UTC on August 20th, 2019 (a) Visible imagery at channel 2 from GOES-16. (b) Precipitation type 

(convective or non-convective) classified by the MRMS PrecipFlag product. Tiles that do not appear on the map (missing square 

regions) are excluded due to low RQI. 

(a) (b)

Convective

Non-convective
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 310 

As mentioned above, the two yellow boxes in Fig. 5b are regions that are missed by the model using a threshold of 

0.5, but detected by the model using 0.3. Figure 6 shows a map of MRMS PrecipFlag, reflectance, and predicted results 

corresponding to the 128128 tile of the yellow box on the left. In Fig. 6c, some of the rainbands around 38N are missed, 

but they appear in Fig. 6d with the threshold of 0.3. Figure 7 shows a scene for the right yellow box. Again, more regions 

with less bubbling are predicted as convective with the threshold of 0.3.  315 

 

 

 

 

 320 

 

Figure 5 Predicted convective regions by the model using a threshold of (a) 0.5 and (b) 0.3. Colors represent a scale of being 

convective (1 being convective and 0 being non-convective). The colored boxes in (b) indicate six scenes selected for further study, 

namely two scenes that are correctly identified as convection (green boxes), two scenes detected using the threshold of 0.3, but not 

of 0.5 (yellow boxes), and two scenes missed at both thresholds (red boxes). 

(a) (b)
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Figure 6 A 128128 tile corresponding to the left yellow box in Fig. 5b. (a) MRMS PrecipFlag. (b) Reflectance at channel 2. (c) 

Predicted convective regions using 0.5. (d) Predicted convective regions using 0.3. 

(a) (b)

(c) (d)
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Figure 7 Same as Fig. 6 but for the right yellow box in Fig. 5b. 

(a) (b)

(c) (d)
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The two green boxes in Fig. 5b are regions that are correctly predicted by the model using both thresholds. Figure 8 

shows 128128 tiles for the upper green box. Although the predicted regions do not perfectly align with convective regions 325 

in MRMS, each model still predicts high values in contiguous regions around the bubbling area. Convective clouds in the 

lower green box show clear bubbling and even overshooting top feature in Fig. 9b. Predicted convection using 0.5 as the 

threshold matches well with the bubbling regions in Fig. 9c, while using 0.3 in Fig. 9d predicts broader regions as convective. 

The region on the left in Fig. 9d that is additionally predicted by using 0.3 does not actually show bubbling, but MRMS also 

assigns it to be convective as well. Therefore, it seems that the model also learned other features that make the scene 330 

convective such as high reflectance or low brightness temperature.  

 

Figure 8 Same as Fig. 6 but for the upper green box in Fig. 5b. 

(a) (b)

(c) (d)
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Figure 9 Same as Fig. 6 but for the lower green box in Fig. 5b. 

(a) (b)

(c) (d)
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Nevertheless, some regions are still missed even with the lower threshold, and they are shown in red boxes. Figure 

10a and 10b display MRMS PrecipFlag and reflectance image of the 128128 tile of the upper red box. While a long 335 

convective rainband is shown in the MRMS PrecipFlag, no bubbling is observed in the reflectance image even though the 

reflectance appears high. In addition, lower part of convection in the lower red box (Fig. 10c and 10d) is also totally missed 

in the model prediction due to no bubbling observed in the reflectance image. These examples suggest that the model mostly 

looks for the bubbling feature of convective clouds to make a decision. 

 340 

 

 

Figure 10 (a) MRMS PrecipFlag and (b) reflectance at channel 2 of the upper red box in Fig. 5b. (c) MRMS PrecipFlag and (d) 

reflectance at channel 2 of the lower red box in Fig. 5b. 

(a) (b)

(c) (d)
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Another scene on 24th of May, 2019 is presented in Fig. 11. Severe storms occurred over Texas, Oklahoma, and 

Kansas producing hail over Texas. Unlike the previous case, most convective clouds show clear bubbling, and accordingly, 

FAR is very low and POD is very high in this case, even with the threshold of 0.5. With 0.5, FAR and POD are 11.0% and 345 

89.0%, and they increase to 23.9% and 95.7% by using 0.3, respectively. More increase in FAR than in POD seems to imply 

that it might be wrong to use 0.3 in this case. However, the increase is mostly from detecting broader regions of mature 

convective clouds, and since they are further from the convective core, sometimes they do not overlap with MRMS 

convective regions. In addition, earlier detection by the model than MRMS contributes to the increase. MRMS tends to 

define early convection as straitiform before it classifies as convective due to its low reflectivity. Convective regions in the 350 

blue boxes in Fig.12b are such regions that did not have strong enough echoes yet to be classified as convective by MRMS, 

but later they are assigned as convective from 19:12UTC once they start to produce intense precipitation. Convective regions 

in green boxes in Fig.12b are additional correctly detected regions but only with the threshold of 0.3.  

 

 355 

 

 

Figure 11 A scene at 19:00UTC on May 24th, 2019 (a) Visible imagery at channel 2 from GOES-16. (b) Precipitation type 

(convective or non-convective) classified by the MRMS PrecipFlag product. Again, tiles that do not appear on the map (missing 

square regions) are excluded due to low RQI. 

(a) (b)

Convective

Non-convective
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Furthermore, in some true positive cases, interesting patterns are observed. Convection in the red box in Fig. 12a is 360 

one of the true positive cases that are classified as convective both by the model and MRMS. The location of predicted 

convective regions matches well with MRMS. However, once the 128128 tiles of MRMS and model detection are overlaid 

on reflectance image, detection area is not precisely on top of the bubbling convective core, but slightly askew. In Fig. 13a 

and 13b, MRMS PrecipFlag and model prediction are plotted on top of the first and the last reflectance image respectively to 

show the temporal evolution of the convective cloud. Both MRMS and the model assign convection in the region a little to 365 

the right of the convective core and even in the dark area shadowed by the mature convective cloud. This is expected from 

MRMS as lumpy cloud top surfaces do not always perfectly match with precipitating location due to sheared structure of the 

cloud and two instruments have different views (radar from below and satellite from above), but it is surprising that the 

model does predict convection in the same location as in MRMS. The model seemed to have learned about the displacement 

in locations and figured out where to predict convection in radar perspective. Although it is not ideal that the prediction is 370 

not made in the bubbling area, these results can be beneficial when this product is used in the short-term forecast to initiate 

the convection as it resembles the radar product. 

 

 

Figure 12 Predicted convective regions by the model using a threshold of (a) 0.5 and (b) 0.3. Colors represent a scale of being 

convective (1 being convective and 0 being non-convective). 

(a) (b)
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5 Conclusion 375 

An encoder-decoder type machine learning model is constructed to detect convection using GOES-16 ABI data 

with high spatial and temporal resolutions. The model uses five temporal images from channel 2 reflectance data and 

channel 14 brightness temperature data as inputs and is trained with the MRMS PrecipFlag as outputs. Low FAR and high 

POD are achieved by the model, considering they are calculated in 0.5km resolution. However, FAR and POD can vary 

depending on the threshold chosen by the user. Higher POD is accompanied by higher FAR, but it was shown that some of 380 

the additional false alarms were not totally wrong because they are usually either the extension of mature convective clouds 

or earlier detection by the model. Earlier detection by the model actually raises a question whether the model is well trained 

for early convection. If early convections were in the training dataset with a label of stratiform, then the model could learn 

early convective features as the feature of stratiform. However, it seemed that the model was able to correctly learn bubbling 

as the main feature of convection due to much larger portions of mature convective regions in the dataset.  385 

Unlike typical objects in classic training images for image processing, e.g., cats and dogs, that have clear edges and 

do not change their shapes, clouds have ambiguous boundaries and varying shapes as they grow and decay. These properties 

of clouds make the classification problem harder. However, bubbling feature of convective clouds are usually very clear in 

high spatial and temporal resolution data, and the model was able to sufficiently learn the spatial context over time within the 

high-resolution data, which led to good detection skill. FAR and POD presented in this study are shown to be better than 390 

results applying non-machine learning method to GOES-16 data. These results show that using GOES (or similar sensors) in 

Figure 13 A 128128 tile corresponding to the red box in Fig. 12a. (a) MRMS PrecipFlag on top of the first reflectance image. (b) 

Predicted convective regions using a threshold of 0.5 on top of the last reflectance image. 

(a) (b)
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identifying convective regions during the short-term forecast can be beneficial especially over regions where radar data are 

not available. 
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Appendix A 

Table A1. Model summary of the encoder-decoder model. 

Layer  Output shape Param # Connected to 

Input_1  (None, 128, 128, 5) 0  

Conv2d_1  (None, 128, 128, 16) 736 Input_1 

Batch_normalization_1 (None, 128, 128, 16) 64 Conv2d_1 

Conv2d_2 (None, 128, 128, 16) 2320 Batch_normalization_1 

Batch_normalization_2 (None, 128, 128, 16) 64 Conv2d_2 

Max_pooling2d_1 (None, 64, 64, 16) 0 Batch_normalization_2 

Conv2d_3 (None, 64, 64, 32) 4640 Max_pooling2d_1 

Batch_normalization_3 (None, 64, 64, 32) 128 Conv_2d_3 

Conv2d_4 (None, 64, 64, 32) 9248 Batch_normalization_3 

Batch_normalization_4 (None, 64, 64, 32) 128 Conv2d_4 

Max_pooling2d_2 (None, 32, 32, 32) 0 Batch_normalization_4 

Input_2 (None, 32, 32, 5) 0  

Concatenate_1 (None, 32, 32, 37) 0 Maxpooling2d_2 

Input_2 

Conv2d_5 (None, 32, 32, 64) 21376 Concatenate_1 

Batch_normalization_5 (None, 32, 32, 64) 256 Conv2d_5 

Conv2d_6 (None, 32, 32, 64) 36928 Batch_normalization_5 

Batch_normalization_6 (None, 32, 32, 64) 256 Conv2d_6 

Max_pooling2d_3 (None, 16, 16, 64) 0 Batch_normalization_6 

Conv2d_7 (None, 16, 16, 128) 73856 Max_pooling2d_3 

Batch_normalization_7 (None, 16, 16, 128) 512 Conv2d_7 

Conv2d_8 (None, 16, 16, 128) 147584 Batch_normalization_7 

Batch_normalization_8 (None, 16, 16, 128) 512 Conv2d_8 

Max_pooling2d_4 (None, 8, 8, 128) 0 Batch_normalization_8 

Conv2d_9 (None, 8, 8, 128) 147584 Max_pooling2d_4 

Batch_normalization_9 (None, 8, 8, 128) 512 Conv2d_9 

Conv2d_10 (None, 8, 8, 128) 147584 Batch_normalization_9 

Batch_normalization_10 (None, 8, 8, 128) 512 Conv2d_10 

Up_sampling2d_1 (None, 16, 16, 128) 0 Batch_normalization_10 

Conv2d_11 (None, 16, 16, 64) 73792 Up_sampling2d_1 

Batch_normalization_11 (None, 16, 16, 64) 256 Conv2d_11 

Conv2d_12 (None, 16, 16, 64) 36928 Batch_normalization_11 

Batch_normalization_12 (None, 16, 16, 64) 256 Conv2d_12 

Up_sampling2d_2 (None, 32, 32, 64) 0 Batch_normalization_12 

Conv2d_13 (None, 32, 32, 32) 51243 Up_sampling2d_2 

Batch_normalization_13 (None, 32, 32, 32) 128 Conv2d_13 

Conv2d_14 (None, 32, 32, 32) 25632 Batch_normalization_13 

Batch_normalization_14 (None, 32, 32, 32) 128 Conv2d_14 

Up_sampling2d_3 (None, 64, 64, 32) 0 Batch_normalization_14 

Conv2d_15 (None, 64, 64, 16) 12816 Up_sampling2d_3 

Batch_normalization_15 (None, 64, 64, 16) 64 Conv2d_15 

Conv2d_16 (None, 64, 64, 16) 6416 Batch_normalization_15 
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Batch_normalization_16 (None, 64, 64, 16) 64 Conv2d_16 

Conv2d_transpose_1 (None, 128, 128, 1) 145 Batch_normalization_16 

 

Table A2. POD, FAR, SR, and CSI values for using different thresholds in the two-step training model. 530 

Threshold POD FAR SR CSI 

0.05 0.94298559 0.535044175 0.464955825 0.4522424 

0.1 0.913858215 0.456447233 0.543552767 0.517060558 

0.15 0.887655352 0.398784349 0.601215651 0.558702899 

0.2 0.85875747 0.348113473 0.651886527 0.588760871 

0.25 0.834369835 0.312095964 0.687904036 0.605253444 

0.3 0.798756916 0.269845006 0.730154994 0.616706239 

0.35 0.769121649 0.240217357 0.759782643 0.618677759 

0.4 0.743219236 0.21689681 0.78310319 0.616344624 

0.45 0.712533049 0.194027871 0.805972129 0.608205409 

0.5 0.686385805 0.176749293 0.823250707 0.598228029 

0.55 0.659030631 0.159993321 0.840006679 0.585532586 

0.6 0.633640923 0.146901862 0.853098138 0.571304851 

0.65 0.607174665 0.133743247 0.866256753 0.555134673 

0.7 0.580303795 0.121656374 0.878343626 0.53713138 

0.75 0.551572206 0.110995861 0.889004139 0.516034904 

0.8 0.523822546 0.101982567 0.898017433 0.49441128 

0.85 0.501165661 0.095021454 0.904978546 0.476111856 

0.9 0.481326022 0.088852528 0.911147472 0.459746639 

0.95 0.45801003 0.080131638 0.919868362 0.44043737 

 

Table A3. POD, FAR, SR, and CSI values for using different thresholds in the standard training model. 

Threshold POD FAR SR CSI 

0.05 0.942117438 0.540193427 0.459806573 0.447173927 

0.1 0.894713617 0.429747339 0.570252661 0.534392221 

0.15 0.855999591 0.363530845 0.636469155 0.574913234 

0.2 0.803875684 0.291727494 0.708272506 0.603916012 

0.25 0.755258694 0.238557529 0.761442471 0.610744279 

0.3 0.683399631 0.180284591 0.819715409 0.59410355 

0.35 0.627938452 0.146008324 0.853991676 0.567059181 

0.4 0.580581814 0.121687532 0.878312468 0.537357899 

0.45 0.534164411 0.103516198 0.896483802 0.503131513 

0.5 0.419381773 0.070663682 0.929336318 0.406421632 

0.55 0.358005307 0.056815544 0.943184456 0.350447719 

0.6 0.305014843 0.046418477 0.953581523 0.300552384 

0.65 0.255235442 0.037863312 0.962136688 0.252697257 

0.7 0.205429901 0.032025597 0.967974403 0.204043085 

0.75 0.158849869 0.031320871 0.968679129 0.158038156 

0.8 0.126544575 0.033665056 0.966334944 0.125989146 

0.85 0.099957158 0.037122494 0.962877506 0.09957343 

0.9 0.070457093 0.046153482 0.953846518 0.070217708 

0.95 0.034891193 0.080737421 0.919262579 0.034784597 

https://doi.org/10.5194/amt-2020-420
Preprint. Discussion started: 14 November 2020
c© Author(s) 2020. CC BY 4.0 License.


